equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
Em teoria cinética molecular em física, a função distribuição de uma partícula é a função de sete variáveis, , a qual dá o número de partículas por unidade de volume num espaço de fase. É o número de partículas tendo aproximadamente a velocidade próxima ao local e o tempo . A normalização usual desta função é
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
Aqui, N é o número total de partículas e n é o número densidade de partículas - o número de partículas por unidade de volume, ou a densidade dividida pela massa de partículas individuais.
As funções distribuição de partículas são frequentemente usadas em física de plasma para descrever interações onda-partícula e instabilidades velocidade-espaço. Funções distribuição são também usadas em mecânica dos fluidos e mecânica estatística.
A função distribuição básica usa a constante de Boltzmann e temperatura com o número densidade para modificas a distribuição normal:
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
Funções distribuição relacionadas devem permitir um fluxo fluido maior, nos casos em que a velocidade original é fixada, então que o numerador do expoente é
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
isotrópicas, nas quais cada termo no expoente é dividido por uma diferente temperatura.
; é a maior velocidade do fluido. Funções distribuição podem também representar temperaturas nãoTeorias sobre plasma tais como a magnetoidrodinâmica podem considerar as partículas como estando em equilíbrio termodinâmico. Neste caso, a função distribuição é Maxwelliana. Esta função distribuição trata o fluxo fluido e diferentes temperaturas em direções paralelas a, e perpendiculares a, o campo magnético local. Funções fistribuição mais complexas podem também ser usadas dado que plasmas raramente estão em equilíbrio térmico.
O análogo matemático da distribuição é uma medida; a evolução no tempo de uma medida num estado de fase é o tópico estudado em sistemas dinâmicos.
Em computação científica e mecânica estatística, uma função distribuição radial, g(r) (em inglês: radial distribution function), descreve como a densidade da matéria circundante varia em função de um ponto distinto.
Supor, por exemplo, que se escolhe uma molécula em algum ponto O no volume. O que é então a densidade média em algum ponto P a uma distância r do ponto O? Se é a densidade média, então a densidade média no ponto P dado que existe uma molécula em O irá diferir de ρ por algum factor g(r).
Pode-se dizer que a função distribuição radial leva em conta as correlações na distribuição de moléculas que surgem das forças que elas exercem umas nas outras:
(densidade local média a uma distância r de O) = g(r) (1)
Desde que o gás seja diluído as correlações nas posições das moléculas que g(r) leva em atenção são devidas ao potencial (r) que uma molécula em P sente devido à presença de uma molécula em O. Usando a deli de distribuição de Boltzmann:
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
(2)
Se foi zero para todos os r - i.e., se a moléculas não exercem qualquer influência entre elas, g(r) = 1 para todos os r. Então a partir de (1) a densidade local média será igual à densidade média : a presença de uma molécula em O não influenciará a presença ou ausência de qualquer outra molécula e o gás será ideal. Desde que haja um a densidade local média será sempre diferente da densidade média devido às interacções entre moléculas.
Quando a densidade do gás torna-se mais alta o então chamade limite de baixa densidade não é mais aplicável porque as moléculas atraídas para e repelidas pela molécula em O também se repelem e atrem uma às outras. Os termos de correlação necessários para descreve correctamente g(r) assemelham-se à equação do virial, é uma expansão na densidade:
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
(3)
na qual as funções adicionais aparecem e que podem depender da temperatura e distância mas não da densidade, .
Dada uma função de energia potencial, a Função distribuição radial pode ser encontrada via métodos de simulação computorizados tal como o método de Monte Carlo. Pode também ser calculada numericamente usando rigorosos métodos obtidos da mecânica estatística como a aproximação de Percus–Yevick.
Um gás de férmions, gás de Fermi ou gás de elétrons livres é um conjunto de férmions não interativos. É a versão na Mecânica Quântica de um gás ideal, para o caso de partículas fermiônicas. Elétrons em metais e semicondutores e nêutrons em estrelas de nêutrons podem aproximadamente ser considerados gases de Fermi.
A distribuição de energia dos férmions em um gás de Fermi em equilíbrio térmico é determinada por sua densidade, pela temperatura e pelos estados de energia disponíveis, via a estatística de Fermi-Dirac. Pelo princípio de exclusão de Pauli, nenhum estado quântico pode ser ocupado por mais que um férmion, então a energia total do gás de Fermi à temperatura do zero absoluto é tão grande quanto o produto do número de partículas pelo estado de energia de cada partícula. Por esta razão, a pressão de um gás Fermi é diferente de zero na temperatura de zero absoluto, em contraste com um gás ideal clássico. Esta então chamada pressão de degenerescência estabiliza uma estrela de nêutrons (um gás de Fermi de nêutrons) ou uma estrela anã branca (um gás de Fermi de elétrons) contra a tração interna da gravidade.
É possível definir uma temperatura de Fermi abaixo do qual o gás pode ser considerado degenerado. Esta temperatura depende da massa dos férmions e da energia da densidade dos estados. Para metais, a temperatura do gás de elétrons de Fermi é geralmente de muitos milhares de kelvins, quando então eles podem ser considerados degenerados. A máxima energia dos férmions a temperatura do zero absoluto é chamada energia de Fermi. A superfície da energia de Fermi no momento espacial é chamada superfície de Fermi.
Desde que as interações são negligenciadas por definição, o problema de tratar propriedades do equilíbrio e o comportamento dinâmico de um gás de Fermi se reduz ao estudo do comportamento de partículas independentes e isoladas. Como está, é ainda relativamente tratável e dá forma ao ponto de servir de base para teorias mais avançadas (tais como a teoria do líquido de Fermi ou a teoria perturbacional) as quais levam em conta as interações com algum grau de exatidão.
Descrição matemática
Dentro da estrutura que a física estatística possibilita, segue-se que com a ajuda de conjuntos estatísticos para um número médio de ocupação dos estados com a energia da estatística de Fermi-Dirac:
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
Onde potencial químico, a temperatura e a constante de Boltzmann.
é oEstes férmions, que estão sujeitos ao princípio de exclusão de Pauli, podem estar na condição de máxima ocupação, ou seja . Esta condição é que a estatística de Fermi-Dirac tratará para qualquer valor de preenchimento pleno , porque o potencial químico de um gás ideal de Fermi não é sujeito a quaisquer restrições.
Gás de Fermi como modelo para os núcleos dos átomos
O primeiro pesquisador a apontar uma explicação simples para o movimento independente de núcleons através do núcleo atômico em seus estado fundamental foi Weisskopf.[1] Tal explicação usa como base o modelo de gás de Fermi. O modelo utilizado é essencialmente o mesmo utilizado para tratar de elétrons livres em um metal condutor. É suposto que cada núcleon do núcleo atômico mova-se num potencial efetivo atrativo que representa um efeito médio de suas interações com os outros núcleons naquele núcleo. Há um valor constante dentro do núcleo para este potencial e externamente ao núcleo ele decresce até zero a uma distância igual ao alcance das forças nucleares e é aproximadamente igual a um poço quadrado infinito e tridimensional, de raio ligeiramente superior ao raio do núcleo.[2] O núcleo atômico contém dois tipos de partículas, os prótons e os neutrons e ambos têm um momento angular intrínseco, ambos são classificados como férmions de spin 1/2, mas sendo duas partículas distinguíveis o princípio de exclusão de Pauli age independentemente sobre cada um deles. Assim podemos considerar que o núcleo é constituído por dois gases de Fermi, o dos prótons e o dos nêutrons e que corresponderão a dois estado energéticos diferentes e cada estado só pode ser ocupado por apenas dois prótons ou dois nêutrons, com spins de sinais opostos.[3][4][5]
Comentários
Postar um comentário